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GPFS Highlights
• scalable – allows incremental improvements by adding 

hardware
• global access – uniform access to file system from every 

node
• distributed locking – allows for parallelism and 

consistency
• portable – provides POSIX interface to file system
• reliable – offers recovery mechanisms, including

high availability – file system will remain accessible to nodes even 
when a node in the file system dies
fault tolerance – file data will not be lost even if some disk in the 
file system fails



GPFS Model
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• application node – node running user app that 
accesses mounted GPFS

• VSD server node – Virtual Shared Disk node (or 
I/O node) with disks attached

• RIO – Remote I/O that allows for a connection 
between the server node and the disks

• SSA loop – Serial Storage Architecture disks may 
be connected in a loop between nodes, allowing for 
failover:

(This is in contrast to a twin-tailed approach which 
is used for SCSI [Small Computer System 
Interface]disks to connect two nodes to a single 
disk.) 2 Hot Spares
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General GPFS Structure
• GPFS resides on each node as a multi-threaded daemon (called mmfsd) 

and a kernel extension.
• The daemon provides data and metadata management, such as disk 

space allocation, data access, I/O operations, security, and quota 
managements.

• The kernel extensions are needed to implement the Virtual File System 
(VFS) layer to present GPFS as a local file system to an application.

• To access to the data disks comprising the file system, each node uses 
VSD/RVSD (Virtual Shared Disk and Recoverable Virtual Shared 
Disk).

• VSD enables nodes to share disks (a logical volume that can be 
accessed by any node in the system partition.)  VSD is comprised of a 
server/client relationship.



The mmfsd daemon performs all of the I/O and 
buffer management, including:

• allocation of disk space
• metadata management
• initiation of disk I/O
• implementation of security and quotas
• read-ahead (prefetch) caching – analyzes read pattern and reads more 

data
• write-behind caching – buffers data until collects efficient write size
• token management – allocation of locks for data and metadata 

management

The daemon implements these global management functions through 
several managers.



GPFS Structure
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• Global Mgt. Functions

– Configuration Manager
– Stripe Group Manager
– Token Manager Server
– Metadata Manager



Global Management Functions
These main management functions may be performed by a 

single node on behalf of all the other nodes, however it is 
possible to have these tasks performed by different 
daemons on different nodes.

Configuration Manager:  (single daemon in the pool of 
nodes performs this role)

• can determine quorum (minimum number of nodes in 
nodeset to start)

• provides fencing of a failed node if necessary for continued 
operation

• if Configuration Manager crashes, another node will run an 
instance (it’s recoverable)



Global Management Functions
Stripe Group Manager:  (single daemon in the pool performs 

this per file system) (also called the File System Manager)
• a ‘Stripe Group’ is a collection of disks that make up 

physical storage
• file system configuration – adding disks, file system repair, 

etc.
• disk space allocation management – handles data blocks 

and inode mapping, and controls which disk regions are 
allocated to each node (allowing for effective 
parallelization)

• token management – sends token requests to Token 
Manager Server

• mounting/unmounting of file system
• quota management
• security services



Global Management Functions
Token Manager Server: (single daemon performs this on the Stripe 

Group Mgr node, i.e., the entire file system)
The status of the token is held by both the Token Manager Server and the 

Token Manager (a kernel extension on the requesting node).
• file is local (served by this node) – a token is granted by the local 

Token Manager and then informs the Token Manager Server of the 
request.

• file is remote (served by another node) – the Token Manager requests 
the token from the Token Manager Server.

GPFS offers:
• byte-range locking – tasks are granted exclusive access to portions of 

file, allowing parallel applications to access non-overlapping blocks of 
a file with minimal contention

• file locking – entire file is locked by single task



Global Management Functions
Metadata Manager:
• metanode – for each open file, a single node is responsible 

for updating that file's metadata.  This node changes if 
another node gains access to the file.



File Structure

• Allocation
– A standard i-node (index-node) structure is used for file 

allocation.  The i-node contains attributes of the file 
(size, owner, permissions, dates, pointer to data or 
indirect block, etc.) plus the pointer (direct or indirect) 
to the data blocks.

– The number of i-nodes is statically set at file system 
creation time and may not be altered.



File Structure

• Striping
– Each file system consists of a set of VSD disks 

constituting a stripe group.  The purpose of striping is 
to improve I/O performance by allowing records to be 
subdivided and simultaneously written to multiple 
disks.  Since this happens without user explicit 
involvement, it is called implicit parallelism.

– RAID strip width should (but might not!) match the 
block size of the file system.  These are two different 
parameters.



File Structure

• Blocks can be striped in three ways:
– round robin – randomly select first disk, then continue 

writing blocks to successive disks
– random – randomly select disk for each block
– balanced random – used when disks are not same size, 

randomly distributing blocks to disks in a manner 
proportional to their size; also described as round robin, 
but does not select a disk in the stripe group again until 
all disks have been used



File Structure

• Metadata
– Used to locate and organize user data contained 

in GPFS’s striped blocks.  I-nodes contain 
direct pointers to user data or indirect pointer to 
indirect blocks.  Indirect blocks may point to 
other indirect blocks or to user data blocks.  In 
GPFS 1.4, a maximum of two levels of 
indirection is allowed.



File Structure

• File Size (in GPFS 1.5)
– 4 petabytes per file system
– 263-1 bytes (~8 exabytes)
– 256 million files per file system (limit in GPFS 

1.4 and GPFS for Linux 1.1)



Memory Utilization
(GPFS Cache)

• The page pool is the GPFS cache of dedicated and 
pinned memory.  (Pinned memory is memory that can 
not be swapped, used to increase performance.)

• The page pool allows for client-side caching, which 
offers a performance gain by not having to transfer 
data to/from disk and across the switch.

• The size of the page pool is an upper limit of the 
actual size of the page pool on each node.  GPFS 
dynamically adjusts the amount necessary for the page 
pool to the max setting.  The range is 4MB – 512MB 
in GPFS 1.4
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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10. The GPFS thread 
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written to disk in GPFS 
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write)
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Data Flow (write) – Entire flow
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Additional Information
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